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1Electromagnetics Laboratory, Helsinki University of Technology
P.O. Box 3000, FIN–02015 HUT, Finland

2College of Engineering and Computer Science, Syracuse University
121 Link Hall, Syracuse, New York 13244–1240, USA

3Faculty of Electrical Engineering, University of Belgrade
Bulevar kralja Aleksandra 73, P.O. Box 35–54, 11120 Belgrade, Yugoslavia

Abstract

We focus on the question how well WIPL–D, a numerical code designed to tackle dynamical
electromagnetic problems, can be applied to solving very low-frequency problems. In particular, the
problem of the static polarizability of a dielectric sphere is calculated. This is done by enumerating
the monostatic radar cross section of the object and taking the low-frequency limit. Peeling away the
strong frequency dependence of the radar cross section, the remaining coefficient is proportional to
the square of the static polarizability. The results show that there is around two decades of frequency
range where the code works well and the situation is clearly in the quasistatic regime. In the example
of a sphere of one-meter radius and relative permittivity 10, the low-frequency breakdown happens
at around 10 kHz.

1 Introduction

Our aim is to study whether WIPL–D [1, 2] which is a code to solve electromagnetic problems with
time-harmonic fields and finite wavelengths can be “misused” to calculate problems that are basically
electrostatic. This is done bluntly by setting the problem with certain physical and geometrical dimen-
sions and then progressively lowering the frequency of the electromagnetic field. This means that we are
travelling from the dynamic regime into the statics. On this road, we are passing through the “twilight
zone” (a striking and telling term by Weng Cho Chew, University of Illinois). At a certain point when
going down, the wavelength is so many orders of magnitude larger than the dimension of the object that
a full-wave code breaks down.

However, if we are already across the twilight zone when this breakdown happens, we are safe. This
is because if the connection between the static and dynamic variables is known (they look different in
these different regions) from the results we can already extract the desired parameters we were looking
for in the first place.

We will show that this project is successful for the case of the polarizability of spherical dielectric
objects (we presume that is working for other shapes as well) when it is calculated from the radar cross
section using WIPL–D. The following presentation is a short resume of the results of our project, for
more details, see [3]. The seminar which gave impetus to this project was organized at the Helsinki
University of Technology in May 2004 [4].
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2 Radar cross section and polarizability

Radar Cross Section (RCS) carries the dimension of a surface, and is a measure how much an object
scatters electromagnetic energy in the backscattering direction. This monostatic RCS is defined by [5]

σRCS = limr→∞

4πr2|Es|2
|Ei|2

(1)

where Es is the amplitude of the scattered field in the distance of r of the object in the backscattering
direction when it is illuminated by a plane wave with electric field amplitude Ei.

On the other end of the frequency spectrum, in electrostatics, the concept of electric polarizability
is extremely essential. The polarizability is the relation between the static dipole moment p induced in
an object and a static exciting field Est, being p = α · Est. In general, the polarizability α is a dyadic
but for symmetric objects, like (isotropic and homogeneous) sphere or cube it is a multiple of the unit
dyadic, equivalent to a scalar α.

For a dielectric sphere, the polarizability is [6]

α = 3V ε0

ε − ε0

ε + 2ε0

(2)

where V is the volume and ε = εrε0 the absolute permittivity of the sphere. The polarizability is often
given in the dimensionless normalized form αn = α/(ε0V ), and for the sphere it is

αn =
α

ε0V
= 3

εr − 1

εr + 2
(3)

Note that in the conducting limit the normalized polarizability of a sphere is equal to 3.
In low frequencies, the scattering from a polarizable object can be calculated from the far field

of a Hertzian dipole with the dynamic dipole moment amplitude jωp, and the field amplitude in the
backscattering direction is

|Es| =
ω2µ0p

4πr
(4)

Since the (static) dipole moment is connected with the incident field as p = αEi, we can write the
connection between the low-frequency limit of the radar cross section and the static polarizability of the
object as follows:

αn =

√
4πσRCS

k2
0
V

(5)

where k2

0
= ω2µ0ε0 with the free-space parameters ε0, µ0.

3 Calculations and results

The monostatic radar cross section of a dielectric sphere was calculated with WIPL–D, more exactly, the
parameter σRCS/λ

2. In the low-frequency limit, where Rayleigh scattering is dominant, this parameter
has the dependency of ω6, in other words λ−6. Therefore from the cross section in the low-frequency
limit we can estimate the polarizability of the sphere.
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Figure 1: The estimate of the polarizability of a sphere with permittivity εr = 10, calculated with WIPL–
D in a broad frequency range. The radius of the sphere is 1 m. The sphere was approximated with two
different plate-models, corresponding to 216 and 96 patches over the whole sphere. In the lower part of
the figure is the relative error of the calculations.

The results of the WIPL–D calculations are shown in Figure 1. These are for a dielectric sphere with
radius a = 1 m and relative permittivity εr = 10. The results shown are the normalized polarizability es-
timates which are calculated using the relation (5) and the RSC results from the software. The estimates
also compared with the exact value for the normalized polarizability αn = 9/4.

In the calculations, we have used the equivalent radius for the sphere. As can be seen in Figure 2,
the surface is an approximation for the sphere. The equivalent radius is derived from the condition that
the maximal deviation of the approximate surface with respect to the perfect sphere is minimal [2].

The time to calculate one frequency point was 10 seconds for the denser sphere and 2 seconds for
the more coarse quasisphere on a Dell Inspiron 8200 laptop machine with clock speed of 1 GHz. In the
code, we used grade Enhanced 3, which is necessary for very low frequency calculations.

As we can see from the results in Figure 1, very good estimates for the static polarizability of an
object can be found from the dynamic calculations with WIPL–D. The sphere calculations give with



Figure 2: The densely and coarsely meshed sphere used in the WIPL-D calculations. Note the use of the
two symmetry planes. The number of quadrilaterals is 54 and 24 in one quadrant, respectively.

reasonable calculation times an accuracy of three significant digits in αn, as long as we are around the
proper frequency. It is important that the analysis is done in sufficienty low frequencies so that Rayleigh
scattering dominates. In the figure we can clearly observe this high-frequency divergence starting at
around 10 MHz. This makes sense because then the wavelength is 30 meters, and higher frequencies
than that correspond to wavelengths which come close to the diameter of the sphere (2 meters).
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